Reporting the World Over

News and Comments about Life

New study lowers carbon-footprint of concrete production

The overall value of concrete carbon footprint might be lower than thought until now, a National Science Foundation (NSF) research finds.

At least 5% of humanity’s carbon footprint comes from the concrete industry, both from energy use and the carbon dioxide (CO2) byproduct from the production of cement, one of concrete’s principal components. Yet several studies have shown that small quantities of CO2 later reabsorb into concrete, even decades after it is emplaced, when elements of the material combine with CO2 to form calcite. A study appearing in the June 2009 Journal of Environmental Engineering suggests that the re-absorption may extend to products beyond calcite, increasing the total CO2 removed from the atmosphere and lowering concrete’s overall carbon footprint.

While preliminary, the research by civil and environmental engineering professor Liv Haselbach of Washington State University re-emphasizes findings first observed nearly half a century ago–that carbon-based chemical compounds may form in concrete in addition to the mineral calcite-now in the light of current efforts to stem global warming.

Researchers have known for decades that concrete absorbs CO2 to form calcite (calcium carbonate, CaCO3) during its lifetime, and even longer if the concrete is recycled into new construction–and because concrete is somewhat permeable, the effect extends beyond exposed surfaces.

While such changes can be a structural concern for concrete containing rebar, where the change in acidity can damage the metal over many decades, the CaCO3 is actually denser than some of the materials it replaces and can add strength.

Haselbach’s careful analysis of concrete samples appears to show that other compounds, in addition to calcite, may be forming. Although the compounds remain unidentified, she is optimistic about their potential.

“Understanding the complex chemistry of carbon dioxide absorption in concrete may help us develop processes to accelerate the process in such materials as recycled concrete or pavement. Perhaps this could help us achieve a nearly net-zero carbon footprint, for the chemical reactions at least, over the lifecycle of such products.”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Information

This entry was posted on May 19, 2009 by in News, Technology and tagged , , .
%d bloggers like this: